近几年来,由于通信技术和信息技术的长足进步,以及政府对环境保护方面条例的推行,高级量测体系(AMI)因其在系统运行、资产管理,特别是通过负荷响应实现节能减排方面的显著效果而得到了广泛的应用。大量智能电表的部署和应用,使得电力公司能获取高频率、广覆盖且时标一致的配电网末端的实测数据。同以往配电网量测具有的稀疏特点相比,高级量测体系除了能向电力公司提供用户结费所需的电能消费数据外,还能实时或准实时地获取各测量点的功率、电压、电流及功率因数等重要运行参数。通过近几年来智能电表的大规模安装和推广,目前各省电力公司的数据中心都累积了海量智能电表量测数据,如何运用这一宝贵的基础性数据资源,挖掘其潜在价值,为配电网的网络优化、优质运行及资产管理等业务提供有力支撑,是学术界和产业界共同关注的焦点,目前在美国、加拿大、法国等国家对智能电表数据分析的相关研究和实践工作正如火如荼地开展。本文将在分析我国智能电表数据应用现状的基础上,深入探讨国内外行业内常用的智能电表数据分析方法及典型应用场景,并给出基于智能电表数据对配电网拓扑进行校验的分析实例。
1 我国智能电表数据应用现状
由于高级量测体系能为实施各方带来显著效益,2009年以来,国家电网公司全面推动了智能电表的安装和应用,截至2014年7月,已累计安装智能电表2.2 亿只,用电信息采集系统覆盖2.3 亿户。南方电网公司也在加快计量自动化系统的建设,截至2014年8月,南方电网公司下属的广东电网公司、深圳电网公司和广西电网公司已建成省级计量自动化系统,广西电网公司已实现厂站、专用变压器、配电变压器3类终端全覆盖,低压集抄客户覆盖率44.1%,智能电表在我国得到空前的发展和应用。
从目前情况来看,我国的智能电表量测数据及采集系统呈现出规模大、采集频率高、数据存储时间长、数据多样化及测量点分布密集5个主要特征。
①系统规模大:当前我国的采集系统一般以省为中心进行集中式部署。以浙江省电力公司为例,已在省公司数据中心建设覆盖全省十几个地市的超大规模采集系统,预计2016年将超过2000万用户。一个以省为中心部署的采集系统,将包含数百万采集终端及几千万只智能电表,其系统规模无疑是巨大的。
②采集频率高:与传统抄表系统相比,智能电表数据采集间隔一般为15min,对于重点用户,采集频率可能还要更高,当前智能电表“生产数据”的速度比传统电表高出十倍甚至是百倍。
③数据存储时间长:从数据分析的视角来说,原始累积数据越丰富、数据的时间尺度越长,对分析结果越有利;目前基于各种因素的综合考量,历史数据一般需要保存7~10年。对于如此长时间尺度的海量数据,如何管理、分类、归档及保证其检索的性能,都是非常困难的事情。
④数据种类多样化:当前智能电表要求采集的数据类型是非常繁多的,其中包含电量类数据:总电能示值、各费率电能示值、最大需量等;负荷类数据:电压、电流、有功功率、无功功率、功率因数等;事件类数据:终端和电表的各种事件和报警;工况数据:采集终端及计量设备的工况信息;电能质量类数据:功率、电压、谐波等;另外还有费控信息等其他数据。
⑤测量点分布密集:无论是国家电网公司还是南方电网公司都对测量点提出了全覆盖要求,即测量点需覆盖变电站馈线出口、专用变压器、公用变压器和低压用户,业务范围从原来单一的居民集抄扩大到厂站计量、大用户负荷管理及变压器监测等。
为充分挖掘智能电表数据的潜在价值,国家电网公司启动了一批基于智能电表数据应用的研究项目。例如基于营配数据融合的配电网资源优化及服务关键技术研究项目,就是充分应用智能电表量测数据,对用户用电消费行为、配电网规划设计模式、短期负荷预测等方面开展研究。另外为了消除配电和用电营销业务之间的数据孤岛,国家电网公司正在实施营配调数据贯通工作,为智能电表数据的分析准备基础条件。目前中国电力科学研究院正在开展电力大数据相关研究,开发电力大数据平台,开展面向大数据的能效分析等关键技术研究,可以预见智能电表数据的深层价值将在未来几年有所体现。不过目前我国对智能电表数据的分析和应用也存在数据碎片化、缺乏系统性,以及超大规模数据集计算效率不高等问题。
2 智能电表数据分析方法智能电表数据分析是指运用统计分析方法对收集来的大量原始智能电表量测数据进行处理、建模和计算,提取有用信息并形成结论,挖掘其内在关联和深层价值,为电力公司的商业运营、电网规划和运行维护等提供决策支持,使其更具有洞察力的过程与科学。与智能电表数据相关的数学统计分析方法可以归结为以下主要4类:相关(correlation)分析、聚类(cluster)分析、异常(exception)分析以及趋势分析。
1)相关分析。相关分析是研究现象之间是否存在某种关联关系的一种统计方法。相关分析分为线性相关分析和偏相关分析等,在智能电表数据分析中,线性相关分析最为常用,它研究两个变量间线性关系的程度,用相关系数R来描述。可以利用负荷与温度的相关关系,结合天气情况来预测负荷高峰。也可以利用连接在同一配电变压器二次侧的智能电表电压测量值来对某一组电表的相关性进行分析。
2)聚类分析。聚类分析就是以一定的标准来汇集某一类数据。例如,连接同一个变压器的电表可以通过聚类分析来确定变压器的负荷。虚拟电表是人为定义的聚类,能够聚类具有同一属性的电表的数据,一种典型的虚拟电表是聚类具有线性关系的电表来进行区域规划和分析(如某一馈线或变压器的负荷)。
3)异常分析。异常分析是指对偏离一般规律的异常事件或现象进行原因追溯的分析方法。异常分析在设备故障和用电异常(如窃电)诊断等方面能发挥重大作用。如统计变压器故障前的一系列历史异常数据,对其进行抽样和建模,就可以预测变压器的故障,从而及时检修或更换。
4)趋势分析。趋势分析是将两期或多期连续的同一指标进行对比,得出它们的增减变动方向、数额和幅度,以揭示事物变化趋势和变化规律的一种分析方法。趋势分析是智能电表数据分析的常用方法,最简单直接的分析就是利用多条趋势曲线同时展示某一用户用电量的同比或环比数据。设备故障前的趋势模型也能够用于辨别零件的毁坏或操作故障。
智能电表数据是配电系统某一时刻运行状态的真实反映,它必然满足或是符合电气工程基本原理和内在规律,如从电源向负荷方向,配电馈线的电压分布呈下降趋势;同一电源点下的各测量点的电压值相近且波动率相似;某一区域供入供出的电量必然守恒等等。基于电气工程的基本原理,采用智能电表量测数据为主要输入,结合上述数学统计分析方法,以信息技术为实现手段,求解某一配电系统特定问题的过程,称为智能电表数据分析法或数据分析元(smart meter data analytics),它是基于多学科的综合分析方法,为我们系统地求解某一问题提供理论指导,目前已成为电力公司数据分析的热点。美国电力科学研究院的T.A.Short,基于同一配电变压器二次侧的用户智能电表电压测量值具有强烈相关性的电气原理,采用线性回归的数学方法,以智能电表的电压值和电量值作为样本数据,实现了对变压器相位的识别,以及变压器与智能电表的电气连接关系和阻抗模型的自动创建。加拿大BC Hydro公司通过类似的原理,利用相关分析,对配电网GIS的拓扑正确性进行校验。该方法的优势是不需要现场人工排查或是额外安装测量装置,只需利用电表数据进行分析就能得出准确的结论。从以上研究成果看出,智能电表数据分析元在实际的工程应用中已经取得了非常明显的效果。
在智能电表数据分析的实际应用中,我们通常需要从超大规模的数据集中提取、处理和运算数据,因此大数据处理是智能电表数据分析过程中需要解决的重大问题。以加拿大BC Hydro公司为例,一个普通居民用户的智能电表,每天会产生3KB以上的数据,每月是100KB左右。当安装智能电表数目达到160万时,计量数据库里每天增加11GB的数据。我国由于人口众多、地域辽阔,主要省份的电力用户数量都在千万以上,其数据规模可以想象将会更加巨大。
在此情景下,显然单机或通常意义上集群系统已无法在指定的时间内完成在对智能电表数据的运算,应用并行计算模式已成为必然。并行计算(parallel computing)是指同时使用多个计算资源解决计算问题的过程,它的基本思想是用多个处理器来协同求解同一问题,即将被求解的问题分解成若干个部分,各部分均由一个独立的处理机来并行计算。并行计算系统既可以是专门设计的、含有多个处理器的超级计算机,也可以是以某种方式互联的若干台独立计算机构成的集群。目前开源的并行计算机集群系统主要有Hadoop、Spark等,这些系统已经被广泛使用在互联网和电信等领域,相信在智能电表数据分析方面也会得到良好应用。
3 智能电表数据分析主要应用场景3.1 客户行为分析
负荷曲线是客户消费行为的直观显示,智能电表数据能详细的记录客户消费细节,如间隔为15min的电量、功率、电压等参数。由于具有相似消费习惯的客户具有相似的负荷分布形状,因此可以根据其负荷分布的相似度来对客户加以分类,从而更加方便企业对客户的分类和精细化管理,并针对某类用户制定更加有针对性的运营策略。
把用户实际的负荷曲线叠加到电网峰谷时段上,可以展现出用户更多的用电细节,计算其峰值时段的电能费用,估算用户错峰的潜力。因此利用智能电表数据对客户行为进行分析,能更有效地促进需求侧管理,合理抑制负荷峰值,提高电网资产的利用率。
3.2 资产管理
利用智能电表数据来辅助配电网资产管理是智能电表数据应用的一个重要方向。通过对电表数据的分析,可以监测设备的运行状态,提前识别设备故障,从而合理优化资产的维护和更换计划。美国的弗罗里达电力电灯公司(Florida Power & Light,FPL)利用智能电表量测数据,对故障配电变压器的二次侧电压数据进行回溯分析,结果发现故障变压器的二次侧电压在故障发生前2~3个月的时间内存在明显的偏高现象。通过对变压器故障机理深入分析得出,这类故障是由于高压侧绕组损坏,变压器变比发生变化而导致。利用这一规律,FPL实施了全系统变压器的故障预警监测,主动更换将要故障的变压器,实现防患于未然。在AMI项目启动的第1个月(2012年11月),就发现了372台符合此条件的变压器(FPL变压器总数在879 000台左右)。在2014年1~6月也已更换452台配电变压器(以电压高于252 V为判据,240 V为额定电压),它们大都是服务年限高于15年的老变压器。通过对智能电表数据的应用,FPL在系统运营方面得到了显著的收益,包括变被动故障为主动的计划停运维护,变压器更新开支平均节省25%,缩短了用户停电时间(比故障停运情形减少93 min)。
从以上案例可以看出,智能电表数据能很好地帮助电力公司提高其资产的管理和运维水平,减少非必要的事故停电,提高用户满意度。
3.3 故障定位与响应
通常电力公司一般依据客户电话来确定电网故障的位置,在派遣工作人员去现场处理之前,需要几个或是更多的故障电话来大致确认故障范围和影响区域,然而这样就会大大增加故障的处理时间。派遣现场工作人员处理故障前,利用电表数据和线路故障指示器联合判断故障地点,将极大地减少故障影响时间。
许多智能电表都是内置电容供电的智能传感器,在线路停电后仍然能够上报“失电”故障信息(last gasp)至故障管理系统。从各智能电表接收到的故障信息能够清楚地判断故障范围,如果把智能电表和地理信息系统结合在一起,通过故障点的分布和拓扑关系可进一步显示各故障点的相关性。另外派遣现场作业人员处理故障前,调度中心的操作人员能够下发指令到相关的电表判断是否断电,这能够极大地减少故障误报。智能电表在恢复供电后也会上报“上电”信息(first breath)。智能电表和操作人员之间的这种互动过程能帮助确认故障修复并检测是否有多重电网故障同时存在。
3.4 网损分析
目前配电网网损计算中存在的最突出问题就是供售电数据不同期,产生此问题的根本原因是不同电压等级的售电量抄表日期不一致,且与供电量的结算日期不同。而智能电表的大量应用,使电力公司可获得变压器、馈线和大量用户的同期(准同期)数据,依据这些数据可得到同期线损,较过去通过手工抄表数据所计算的结果要精确很多。
除了网损的同期问题外,网损计算的周期也是值得关注的问题。传统网损分析一般每月进行一次,属于事后折算定性分析,存在明显的滞后性和盲目性,往往不能正确评价损耗率是否合理,也不能及时做出补救措施。电力是一种特殊的商品,每时每刻都随着工农业生产、居民生活、天气等发生变化,线损率也随之变化。怎样来实时地跟踪这些变化,或者将发生变化的监测时间压缩到最小是亟待解决的问题。智能电表采集间隔一般为15min,可以把原来一个月进行一次的网损分析缩短至15分钟级,甚至可以对重点关注的某个或一组用户,设置到5min或更小的间隔,这样可以为网损分析提供实时(或准实时)的测量数据,对电网运行过程中的用电异常、窃电行为提供及时主动预警。
3.5 配电网状态估计
传统意义上,电力公司通过位于变电站内或配电线路沿线的SCADA设备来监测配电系统,例如线路重合闸设备、电压调节器和电容控制器等。SCADA测量能够提供电流、电压等信息,再结合配电管理系统DMS中的先进软件应用,可以有效地提升对配电线路分析、检测的清晰度和性能,对配电线路所有测量点实时电气信息做出状态估计,但是SCADA无法显示配电线路以外的电气信息。
智能电表数据可以补偿SCADA实时数据的不足,其提供的小时冻结数据甚至是分钟冻结数据显著提升了状态估计精度。把智能电表系统收集的历史数据与天气信息和GIS模型结合起来,构建精度更高的用户模型。用户数据实现近实时收集,随时掌握用户点的精确功率流,为配电网状态做出更精确的估计。
3.6 电压和无功优化
集成的电压/无功优化(volt/var optimization,VVO)与传统未经协调的局部控制方法不同,VVO使用全网实时信息和在线模型对配电网络进行全面评估,提供全网优化和协调控制策略,使各项调节控制措施产生的结果能与最佳控制目标一致。 当前应用的VVO系统采用准实时的配电网潮流模型,潮流模型建立在实时网络拓扑模型、节点负荷模型和二次回路等效模型之上。负荷模型的调整依靠变电站自动化和馈线自动化SCADA系统的测量来实现,并采用下游配电线路的状态估计电压作为配电网潮流模型的参考电压。因此客户端电压的精度取决于参考电压的精度与配电线路、配电变压器和二次回路等效模型的压降。这些模型的误差都给电压无功优化带来许多不确定性,降低了VVO的性能。利用覆盖全网的智能电表(包含馈线、配电变压器和居民电表)和通信网络,智能电表的量测数据作为SCADA系统的冗余,能够通过减少无功优化中的不确定性,提升电压无功优化性能。
VVO的另一个目的是在不违反电力服务标准的情况下,使得任意用户点的配电电压尽可能低。大多数VVO方案依靠状态估计所得到的低电压限制和模型结果往往精度不够,VVO应用倾向于采用保守方案来保持电压不违反低电压门限。智能电表的历史数据和实时数据能显著提升模型的精度,并保证无功控制行为不违反运行限制。另外在系统中的薄弱点,通过对智能电表进行特定的设置,使其能为VVO返回近实时测量数据,为其优化过程提供帮助。
综上所述,智能电表数据大量应用于配电网的规划设计、运行维护及客户服务等各个方面,除了上面列举的方向外,智能电表数据还可以广泛应用于负荷预测、可靠性评估、相位识别、三相不平衡分析等方面。
4 基于智能电表数据的配电网拓扑校验应用实例本应用实例将介绍如何采用智能电表数据分析方法,对配电网地理信息系统(GIS)中设备的电气连接关系进行正确性校验。电力公司通常使用GIS系统来描述和管理配电系统中各种电力设备以及它们的电气连接关系,在已有的配电网GIS系统数据中,存在着大量的错误或者误差,例如:
1)实际电气拓扑关系与GIS系统数据不相符,如电力用户与台式变压器的连接线路不相符、台式变压器与馈线的连接线路不相符等;
2)设备资产的地理位置错误、参数不一致等。
这些错误和误差对配电系统的资产管理、系统运维、供电中断响应以及维修人员的人身安全都有不良影响。目前,为了校验和修正这些错误或者误差,电力公司的通常做法是:当实际拓扑关系发生变更时,利用人工记录这些变更并更新GIS中的相关数据,或者专门组织人力进行实地巡测来修正这些错误。这些方法均需要耗费大量的时间、人力和物质资源,而且准确性不够,同时对于采用地下电缆铺设的台区、偏远台区等不具备良好的可操作性。
加拿大BC Hydro 公司基于智能电表数据分析方法,为解决上述问题提供了新的思路,其主要分析过程如下:
(1)按一般的电气工程原理,配电网的电压分布具有以下特性:
1)因为与不同馈线相连的负荷的分布是不同的,所以其电压分布是不同的;
2)电压值的大小在同一馈线上从上游至下游呈递减趋势;
3)负荷在系统中是变化和相互影响的,如果两个负荷的电气距离越近,它们的电压曲线就越相似,相关度就越高,反之亦然。
(2)从GIS系统中选取某一配电变压器,例如此台区下共有13个电力用户的智能电表,利用这些智能电表的小时电压分布序列(一周的时间),按照样本数据相关性分析算法,对其进行相关系数计算(见图1),可得出一周内所有电表小时电压曲线之间的相关系数矩阵。可以看出,除了电表11和电表13,其他所有该变压器下的智能电表小时电压之间的相关系数都大于0.97,这样高的相关性可以表明这些电表确实都是接在该变压器下。然而,电表11和13与其他电表之间的相关系数在比较低的0.67~0.78区间(在图1中以灰色底色示出),这表明这两个电表在实际的拓扑结构中可能是连接在其他变压器下的。再把这两个检出的电表与其他相邻的台区内电表进行电压特性相关分析和量值比较,可以推断出其正确的接线位置。
BC Hydro公司基于智能电表数据对配电网拓扑进行正确性校验,是电气工程原理与其他分析方法相结合,用于解决电力系统实际生产运行问题的典型案例,具有很好的参考和借鉴意义。
图1 电表1-13d 电压相关系统矩阵
5 结语
智能电表数据是配电系统运行的基础性数据,它为电力公司提供了规模巨大、时标一致、量测频率更高、覆盖范围更广的可信数据源。聚类、相关分析等统计学方法,以及信息技术都是进行智能电表数据分析的常用手段。当然综合应用电气工程、统计学和大数据等相关学科,寻找智能电表数据与电网运行的内在关联,系统地求解某一配电系统的实际问题,已成为智能电表数据分析的重要方法。挖掘智能电表数据蕴含的深层价值,将作为未来电网的一个基本功能,广泛服务于运营决策、配电网规划、运行管理及客户服务等各个方面,为配电系统迈向智能化提供更加有力的支撑。 来源: 供用电技术