相关阅读:面向智能电网应用的电力大数据关键技术
实施智能电网发展战略不仅能使用户获得高安全性、高可靠性、高质量、高效率和价格合理的电力供应,还能提高国家的能源安全,改善环境,推动可持续发展,同时能够激励市场不断创新,从而提高国家的国际经济竞争力。简而言之,提高供电安全性、生态可持续性和经济竞争力是智能电网的3个目标。
智能电网最本质的特点是:电力和信息的双向流动性,并由此建立起一个高度自动化和广泛分布的能量交换网络;把分布式计算和通信的优势引入电网,实现信息实时交换和达到设备层次上近乎瞬时的供需平衡。
未来的电网将由集成的电力网和通信网组成。电力网是灵活的、可重构的,且电所及之处均有可靠的双向通信,由底层的智能网络代理(INA)开始这两张网高度融合。
微处理器岁月之前创建的集中规划和控制的电力基础设施,在很大程度上限制了电网的灵活性,失去了效率,致使在安全性、可靠性等几个关键方面承担着风险。所以智能电网是分布式智能的基础设施。
以智能配电网为例,它被分成许多片(Cell),每个Cell中有许多由片内通信连接起来的INAs(如继电保护、分布式电源(DER)等),这些代理能够收集和交流系统信息,可以对局部控制作出自主决策(如继电保护),也可以通过Cell中的配电快速仿真与建模(DFSM)协调做出决策(如电压调节与无功优化、网络重构);同时各片之间有通信联系,由装有DFSM的配电调度中心协调各片的决策;进而输、配电调度中心之间也通过通信联络起来,装有输电快速仿真与建模(TFSM)的输电调度中心,根据整个系统的要求协调决策,实现跨地理边界和组织边界的智能控制,使整个系统具有自愈功能和强抗扰能力。
在智能电网中由于能够实时交换信息,使得大量分布式发电(含风能和太阳能等可再生能源发电)和分布式储能在电网中可以即插即用,进而还可参与运行优化;使得用户中可平移负荷,可与电网友好合作(犹如虚拟电源),帮助电网实现需求侧管理(如削峰填谷),并在紧急情况下支援电网运行。
通常把分布式发电、储能和需求侧管理统称为DER。如何处理数以万计的DER并应对风能和太阳能等可再生能源发电的间歇性、多变性和不确定性,同时确保电网的可靠性以及人身和设备安全,并激励市场的问题已经历史性地摆在面前。
智能电网要实现前述3个目标并具备前述的特点,所面临的挑战是极其广泛的,涉及许多技术、体制和社会问题。在其发展的各个阶段,从基础科学和工程技术的研究直到开发、示范和运行都会出现障碍。厘清其发展过程中关键性的障碍,可以帮助明确如何才能使其最大限度地发挥潜能,从而为国家提供广泛的社会和经济效益。本文试图归纳智能电网关键的挑战性问题。
1)基础设施
2)标准和协议
3)计算机网络(赛博系统)安全
4)运行和规划模型
5)负荷与电源计划安排与调度
6)储能
7)能源效率、需求响应和负荷控制
9)态势感知
10)市场设计
11)法律框架和监管路径
结语
最后需要说明的是:当对智能电网3个目标的侧重点发生变化时,智能电网实施的路线图也会不同,因而上述挑战性问题的优先级也会略有变化。
这里特别强调指出以下几点。
1)计量科学和技术上的进步,以及标准的制定,将贯穿这些挑战,并影响智能电网的各个方面。例如:①缺乏标准和协议是实现系统优化和有效通信的障碍;②缺乏适当的评估、量测和证实方法,制约有效利用EE、DR和DLC策略的能力;③安全性(如电力系统概率的静态和动态安全性评估)、电网性能以及规划的测度不充分、不一致或不存在。
所有这些挑战都具有较强的计量科学和技术的根源。因此,如果得到解决,就可能产生深远的影响。为了加速智能电网的发展和收获潜在的(能量的、经济的、环境的和社会的)效益,这些无疑是至关重要的和需要优先研究的课题。
2)需要应对复杂的、多学科的工程挑战。为了加快智能电网的创新,同时需要科学与工程两个方面的进展。物理科学领域的科研人员和工程师需要与信息科学的同行密切合作,并使用共同的语言和协议,以确保获得具有抗扰能力的、可行的设计。
3)法律框架和监管、市场设计以及管理改革,是智能电网成功实施并获取应得效益的基本保障,需要国家层面的关注,也需要社会学家(含律师)与科技专家的密切合作。来源:《电力系统自动化》